

The 25th Annual Meeting @ Payap University May 27-29, 2015

OCP Effects in Suffixes with Burmese Creaky Tone

Jeremy Perkins¹, Seunghun J. Lee², Julián Villegas¹

University of Aizu¹, Central Connecticut St. U.² & U. of Johannesburg²

Laryngeal features and Obligatory Contour Principle (OCP)

- Laryngeal features and dissimilation (OCP)
 - [voice]
 - Rendaku in Japanese (Vance 2015: 397-)
 - [spread glottis]
 - Deaspiration in Attic Greek & Grassman's law (Steriade 1982: 234)
 - [long VOT] 'ejectives'
 - co-occurrence restriction in Quechua (Gallagher 2014)
 - See also Bennett (2015) for other types of dissimilatory process in consonant phonology
- No known study that reports creaky voice being part of such a phonological process

Burmese

- A Tibeto-Burman language mainly spoken in Myanmar
- Speakers:
 - 32 million (as L1) and 10 million (as L2)

	Okell	IPA (W	PA (Watkins 2000:145)	
Low tone	mu	[mù:]	'nature'	
High tone	mù	[mú]	'drunk'	
 Creaky tone 	mú	[mú̯]	'respect'	
Stop tone	muq	[mʊ́ʔ]	'smooth'	

Acoustics of Burmese tone

(Watkins 2000: 142-143)

Fundamental Frequency (F0)

Closed Quotient

/ka: ká: ká ká?/ (ကာကား က ကတ်)

Experiment

- Research question
 - Are there OCP-effects for combinations of like tone (creaky-creaky and low-low)?
- Production of creaky vs. low tone
 - Noun + (Suffix) vs. Verb + Suffix
- Verbs have a clause boundary following them.
 - Is this clause-boundary marked by F0 or creakiness?
 - Nouns have no such clause boundary.
- Tokens have target words embedded in a sentence:
 - See appendix for the full list of sentences

Data collection

- Participants
 - Eight native Burmese Speakers (4 males, 4 females) between 27 and 41 years old
 - All residing in the USA, arriving after age 20.
- Recording session
 - Marantz PMD-661 digital Field Recorder
 - Shure WH-30 head-worn microphone
 - Quiet room
 - Participants read randomized target sentences from a powerpoint file (three repetitions)
 - The file was advanced by the researcher who monitored the disfluency or unnaturalness of read sentences.

Stimuli

- see the appendix for a full list
 - 4 suffixes (2 low tone, 2 creaky tone)
 - 8 roots
 - 2 low tone nouns, 2 creaky tone nouns
 - 2 low tone verbs, 2 creaky tone verbs
 - 32 combinations + 4 unsuffixed (nominal) roots
 - only 4 unsuffixed nouns used because verbs have obligatory suffixes
 - 36 stimuli x 3 repetitions = 108 tokens per speaker

```
4 x C tone Root 2 x C tone Suffix
4 x L tone Root 2 x L tone Suffix
```

Methods: annotation

- A Praat script marked interval boundaries based on pauses.
- The 2nd author annotated vowels of target syllables based on the audio-visual cues.
 - The beginning and the end of a vowel were marked using information obtained from the formants in spectrograms.
- Another Praat script separated each target into a single file and automatically assigned a name to these files.

Methods: creakiness algorithm

- A creakiness detection algorithm for use in Matlab (Kane et al., 2013 and Drugman et al., 2014) was used to measure creakiness.
- A composite of acoustic measures that correlate with creakiness is used:
 - Spectral tilt (H2–H1)
 - F0 contour
 - Residual Peak Prominence (RPP)
 - Power Peak Parameters
 - Inter-Pulse Similarity
 - Intra-Frame Periodicity
- Degottex et al., 2014 originally trained the algorithm on databases with creaky sound tokens from English, Finnish, Swedish and Japanese.

Example of a result of the creakiness algorithm

 The creakiness algorithm was run on creaky syllables produced by two male speakers of Burmese

Methods: statistics

- Tokens were time-normalized prior to fitting a Smoothing Spline ANOVA (SS-ANOVA) model for both F0 and creakiness, following Gu (2014).
- Evaluation of the fitted model was done by predicting F0 and creakiness every 1 percentage point of the normalized time.
- Plots include 95% Bayesian confidence intervals.
 - Overlapping between confidence intervals corresponds to timeregions where no evidence of a significant difference between tones was found.

Results - Contrastive F0

 Mean F0 is higher in creaky tone than low tone for both roots (left, red box) and suffixes (right, red box).

Results -Contrastive Creakiness

- Low-tone roots (left, in red circle) are creakier than creaky-tone roots, except creaky-tone roots without a suffix (the green line).
- All suffixes are quite creaky (right).
 - Low-tone suffixes are creakier than creaky-tone suffixes.

Results – F0 in Nouns & Verbs

- F0 is higher in verbs (emerald) than nouns (beige) independent of the presence of a suffix
- This difference is more pronounced in creaky tone (left) than in low tone (right).

Results – Creakiness in Nouns & Verbs

- Creaky-tone nouns (beige) are creakier than creaky-tone verbs (emerald).
- Low-tone verbs (emerald) are creakier than low-tone nouns (beige).

Discussion – OCP Effects

- Research question
 - Are there OCP-effects for combinations of like tone (creaky-creaky and low-low).
 - There is no OCP-effect in low tone vowels.
 - In C_{root}-C_{suffix} sequences, C_{root} is not creaky, a possible OCP effect.
 - Note that C_{root} without a suffix is creaky.
 - However, C_{root} in C_{root}-L_{suffix} sequences is also not creaky.

Discussion – Prosodic Account

- Observation: Verbal roots (plus a suffix) are followed by a clause boundary, and are marked by:
 - Increased F0 in clause-final creaky tone syllables.
 - Increased creakiness in clause-final low tone syllables.
- Hypothesis: Prosodic boundaries are characterized by a composite of creakiness and FO.
 - When the clause-final syllable is low tone:
 - Prosodic boundary marked by increased creakiness.
 - When the clause-final syllable is creaky tone:
 - Prosodic boundary marked by increased F0.
 - The prosodic boundaries are phonetically marked by creakiness or F0, depending on the context (low or creaky tone).

Discussion – Non-Prosodic Effect in Nouns

- Nouns differ from verbs in that they are not followed by a clause boundary.
- Hypothesis: The tonal contrast in nouns is preserved.
 - 4 of 8 speakers had (slightly) more creakiness in creaky-tone than in low-tone nouns (or following suffixes).
 - 1 of these 4 speakers did not have an F0 contrast in nouns (shown below).
 - The remaining 4 speakers did not show any creakiness contrast.
- We need more evidence that a creakiness contrast exists in nouns.

Discussion - Lack of Creakiness

- Creaky tones were not consistently creaky. Why?
 - Contrast is expressed via raised F0 instead of creakiness.
 - Genuine variability
 - 4 of 8 speakers show (weak) evidence of contrastive creakiness in nouns.
 - Prosody
 - Targets from only one position within a sentence (cf. Lee & Win 2014).
 - Age of speakers
 - Our speakers are relatively young.
 - Diachronic Shift: F0 is the primary cue for creaky tone, and not creakiness in younger speakers.

Conclusion

- Creaky tone is characterized by raised F0 in 7 of 8 speakers.
- Prosodic boundaries are marked by increased F0 or creakiness, whichever is not the primary cue in the vowel.
 - Increased F0 in creaky-tone vowels
 - Increased creakiness in low-tone vowels.
- Creaky tone was not consistently characterized by creakiness in all but 1 of 8 speakers.
 - Speakers vary on creakiness levels.
 - F0 did not vary to the same extent.
- Future Research: Do Burmese speakers use F0 more than creakiness in perception of creaky tone?
 - Do high tone & killed tone also display context-dependent creakiness?

References

- Degottex, Gilles, Kane, John, Drugman, Thomas, Raitio, Tuomo and Scherer, Stefan (2014) COVAREP – A collaborative voice analysis repository for speech technologies. In *IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP*, 960-964.
- Drugman, Thomas, Kane, John and Gobl, Christer (2014) Data-driven detection and analysis of the patterns of creaky voice. *Computer Speech & Language*, 28(5):1233-1253.
- Gallagher, Gillian (2014) An identity bias in phonotactics: Evidence from Cochabamba Quechua. *Laboratory Phonology* 5(3):337-378.
- Gruber, James (2011) An articulatory, acoustic, and auditory study of Burmese tone. PhD Dissertation, Georgetown University.
- Gu, Chong (2014) Smoothing Spline Anova Models: R Package gss. *J. of Statistical Software* 58(5):1-25.
- Kane, John, Drugman, Thomas, and Gobl, Christer (2013) Improved automatic detection of creak. *Computer Speech & Language*, 27(4):1028-1047.
- Lee, Seunghun J. & Phyu Phyu Win (2014) Effects of case markers on Burmese declarative intonation: an experimental study. Southeast Asia Journal 24(2): 299-320.
- Steriade, Donca (1982) Greek prosodies and the nature of syllabification. PhD dissertation.
 MIT.
- Vance, Timothy (2015) Rendaku, In: Kubozono, H. (ed.) Handbook of Japanese phonetics and phonology, Mouton de Gruyter. 397-444.
- Watkins, Justin (2000) Notes on creaky and killed tone in Burmese. SOAS Working Papers in Linguistics 10: 139-149.

Acknowledgements

- We would like to thank Burmese speakers who participated in the study. A special thanks to Kala Noo and U Khin Maung Gyi who greatly helped us with the process of contacting the Burmese community.
- We also thank Phyu Phyu Win for the help constructing the target sentences, and Kosei Otsuka for the help transcribing stimuli from Burmese scripts (provided in the appendix).
- This research was partially funded by a CSU-AAUP university research grant awarded to Seunghun J. Lee and Kakenhi grant # 15K16745 awarded to Jeremy Perkins.

Appendix – Stimuli

Transcription based on OKELL, John (2010 [1994]) "An Introduction to the Spoken Language Book1", DeKalb: Northern Illinois University Press.

- 1. Nga-gá nwe caiq-teh.
- 2. Nga-gá <mark>lu</mark> mè-deh.
- 3. Nga-gá né găyú mă-saiq-p'ù.
- 4. Nga-gá <mark>lá</mark> myin-deh.
- 5. T'ămìn ma-yin mă-sà-ba-néh.
- 6. Thu-dó la-yin pyàw-ba.
- 7. Nga-gá nwe-go caiq-teh.
- 8. Nga-gá <mark>lu-go</mark> mè-deh.
- 9. È-da má-yin dhădí t'à-ba.
- 10. Khămyà lú-yin ăp'àn-k'an-yá-meh.
- 11. Nga-gá né-go găyú măsaiq-p'ù.
- 12. Nga-gá lá-go myin-deh.
- 13. Di ăthì ma-da sà-ló mă-yá-bù.
- 14. Yan-goun-go la-da mò-ywa-deh.
- 15. Di hniq nwe-ha pu-deh.
- 16. Di-hma lu-ha nèh-deh.
- 17. Di zăbwèh má-da lè-deh.
- 18. Lu-dwe lú-da măkàun-bù.

- 19. Theiq măca-dhè-gin-gá né-ha pu-deh.
- 20. Măné-gá lá-ha tha-deh.
- 21. Pàn-dhì-ha ma-déh ăthì-ba.
- 22. Cănaw la-déh myó-gá yan-goun-ba.
- 23. Di hniq nwe-ha mă-pu-bù.
- 24. Di-hma lu-gá myà-deh.
- 25. Thu-dó má-déh thiq-ta-gá lè-deh
- 26. Thu-dó lú-déh lu-bba
- 27. Theig măca-dhè-gin-gá né-gá pu-deh.
- 28. Mă-né-gá <mark>lá-gá</mark> tha-deh.
- 29. Pàn-dhì ma-ló măsà-bù.
- 30. Thu-dó la-ló cănaw-dó thwà-deh.
- 31. Di hniq nwe-yéh ăpu-gá pyìn-deh.
- 32. Da-gá lu-yéh nà-ba.
- 33. Thu-dó má-ló ywé-ba-deh.
- 34. Cănáw eig-ko lú-ló paig-s'an măshí-dáw-bù.
- 35. Thu-dó la-méh né-yéh lá-gá ò-gouq-pa
- 36. Da-gá lá-yéh ălìn-yaun-ba

ကျေးဇူးတန်ပါတယ်။

คุณ ขอบคุณ

ありがとう